Risk Analysis of Occupational Health and Safety in Mechanical Engineering Workshop Room at VHS Taman Siswa 2 Jakarta Using the HIRARC Method Triyono, Riska Kurnia, Fikri Azhar, Himawan Hadi Sutrisno, Jafar Amirruddin, Nugroho Yoga ¹Fire Material and Safety Laboratory, Jakarta State University, Indonesia E-mail: triyono.fttm@yahoo.com ### ABSTRACT Many people are not aware of the occupational health and safety risks that exist in the work environment. Therefore, it s necessary to carry out a hazard risk analysis to find out the hazards contained in the environment. This study conducted an analysis of occupational health and safety risks in a machining engineering workshop at VHS Taman Siswa 2 Jakarta. This type of research is a descriptive research with a qualitative approach using the case study method. The data analysis model uses the *Miles and Huberman technique*, by reducing data, presenting data, and drawing conclusions or verification. From this study, 41 hazards were identified with 24 low risk hazards, 11 moderate risk hazards, and 6 high risk hazards. Risk control in the workshop consists of 26 planned risk control measures and 10 unplanned risk control measures. The reseacher suggest that the management of VHS Taman Siswa 2 Jakarta can carry out internal audits and scale checks by paying attention to the OHS culture in the machining workshop area by involving all workshop users, namely the head of the workshop, teachers, technicians, and students. Key Words: Occupational Health and Safety, Risk Analysis, Risk Level. #### INTRODUCTION Occupational Health and Safety (OHS) is one of the areas of the public health that focuses on the working community both in the formal sector and in the informal sector. Occupational Health and Safety has three main components, namely work capacity, work environment, and workload. The three components have a good and harmonious interactive relationship to produce optimal occupational health [1-4] Handling OHS problems in the workplace must be carried out thoroughly, including in workshops and laboratories in an educational institution [5]. According [6], education plays a very important role in realizing quality human resources and being able to compete in the era of globalization. Every workplace should implement occupational health and safety, especially in vocational high school, which will later be dealing directly with materials, equipment that have potential hazards [7]. One of the important aspects for a vocational school that manages infrastructure which includes school buildings, workshops, and laboratories, learning activities using tools and machines, is the aspect of occupational health and safety for school residents [2, 3, 8-10]. Potential threats to occupational health and safety in general in the vocational high school environment include the location of the workshop where the workplace is very close to classrooms and offices which are at risk of noise originating from the operation of tools and machines, the use of heat sources in the workplace [4, 11-13]. Fire accidents can occur anywhere and anytime, so having knowledge to anticipate fires is very important, then the increased knowledge about fire hazards is expected to be a determining factor in the reduction of fire rates in the future. (Sutrisno et al., 2021) Therefore, it is necessary to analyze the potential hazards that occur in the workplace. There are many cases of neglect of the dangers that threaten only for reasons of work efficiency, for example the use of tools or materials that do not meet the requirements but are forced to be used. Optimization efforts are needed, but must meet occupational safety and health requirements [5]. There are several facilities that must be designed such as: emergency stairs, emergency exits, corridors, emergency lights, directional signs, to alternative power sources in the event of a disaster [14, 15]. At VHS Taman Siswa 2 Jakarta, there have been approximately 4 work accidents in 2015-2020. This shows that students awareness of OHS behavior is still very lacking. Judging from the results of observations and observations of the machining practicum, it is clear that students use equipment and machines that are prone to work accidents, so it can be concluded that knowledge about OHS machining students at VHS Taman Siswa 2 Jakarta is still very lacking and the management system must be changed so that accidents during practicum can be prevented and avoided. 22 ### MATERIALS AND METHODS The analysis of this research uses the HIRARC method with the data analysis technique of the *Miles and Huberman* model . The *Miles and Huberman* model analysis process consists of three step . First, do the reduction data by collecting workshop condition data from observations which are categorized into 7 variables, including workshop conditions and potential hazards in turning, milling, drilling, grinding, welding, and bench work activities. The second is by presenting data in the form of a HIRARC table and the last one is interesting conclusions or verification of the risks that occur. The flow chart can be seen in the below. ### **Observation and Interview** Observations and interviews were conducted at the machining workshop of VHS Taman Siswa 2 Jakarta by filling out the checklist sheet for the head of the department and the head of the machining workshop for VHS Taman Siswa 2 Jakarta. #### **Hazard Identification** After getting the results from observations and interviews, then determine what potential hazards occur in the machining workshop at the school. ### **Determining the Level of Hazard Risk** Determining the level of this hazard risk through the HIRARC method based on the *likelihood* and *consequence* values. ### Hazard Confirmation, Risk Level, and Hazard Control By doing an analysis using the HIRARC method, you will get the potential hazards that occur, the level of risk that exists, and how to control these hazards. #### **Hazard Risk Control** This hazard risk control is the final result of the above analysis. After knowing what the potential hazards are, how many levels of risk there are, then developing hazard risk controls to reduce the hazards that occur in the workplace. ### RESULTS AND DISCUSSION Based on several series of activities carried out, the results of each activity are: ### 1. Observation and interview Based on the results of observations and interviews, the results obtained are photo documentation, conditions, and potential hazards contained in the workshop, which are as follows: | No. | Documentation | Workshop Condition | Danger Occurs | |-----|---------------|---|---| | 1. | | There are not instructions for use on lathes, mills, drills, grinders, welding, and bench work. | Student potential experience error in operation machine that can cause injury or accident work. | 022 Fire Society Journal | 2. | There are not posters related to the importance of OHS and the dangers posed when using the machines. | Students can be indifferent, careless, so no knowing as a result and cause accident work. | |----|---|---| | 3. | There aren't evacuation route. | Process evacuation can be delayed which because accident or fire becomes more big. | | 4. | Between the grinding area and the welding area are too close. | Student/teacher could experience eye injury because of area grinding and welding too close. Because in grinding and welding area has different PPE. | | 5. | Extinguisher light fire that located outside workshop. | Because the fire extinguisher not at within the area workshop, it can be panic when there is a fire. | | 6. | There is a hand washing area in the machining room which can cause the wet floor to be slippery due to splashing water. | Floor which slippery could cause student/teacher experience injury due to slip | |----|---|---| | 7. | There are not markings for areas requiring special PPE such as grinding and welding areas. | Cause accident or consequent disease work/practicum which is conducted students/teachers. | | 8. | There isn't safety in the grinding area. | Splashes of grinding metal or grams can hit students/teachers in the vicinity. It can cause various diseases if exposed continuously. | After getting the results of the workshop conditions, then proceed with the identification of the hazards that exist in the VHS Taman Siswa 2 Jakarta workshop. #### 2. Hazard Identification At the VHS Taman Siswa 2 Jakarta workshop, there are 6 process activities, namely the turning process, the milling process, drilling, grinding, welding, and bench work processes. There are several potential hazards that occur in each process of these activities, namely: ### a. Turning process In the types of activities that exist in the turning process, there are potential hazards, namely: | No. | Type Activity | Potential Hazards | | |-----|----------------|---------------------------|--| | 1. | Install Chisel | Get hit by a sharp chisel | | | | | Blunt chisel: | | | |----|---------------------|--|--|--| | | | - Could cause sound noisy other hearing | | | | | | - Could cause hot too much | | | | | | - Could result in chisel broken could bounce and hurt students | | | | | | Chisel no
installed with correct on tools post | | | | | | - Installation which no right can result in chisel easy blunt even broken | | | | | | - Chisel which no installed with correct could bounce and injure students | | | | 2. | Install object work | - The workpiece is not properly attached to the tight. | | | | | | Could result in object work damaged even can bounce off injuring
students. | | | | 3. | Laying keys | Putting keys close with part moving machinery can cause keys the shift and then bounce hurt students | | | | 4. | Process Turning | - Caught bounce used turning which hot cause irritation to skin | | | | | | Dress or wearpack which have arm length can be wrapped around the spindle machine which turn | | | From the results above, the potential hazards were seen through the types of activities and interviews with the head of the workshop and teachers from SMK Taman Siswa 2 Jakarta. ### b. Milling Process In the types of activities that exist in the milling process, there are potential hazards, namely: | No. | Type Activity | Potential Hazards | | |-----|------------------------------|--|--| | 1. | Installing the milling knife | knife Injured from being scratched by a milling knife sharp | | | 2. | Install object work on vise | Installation object work which not enough tight may cause the workpiece or eyes knife milling broken and bounce hurt student | | | 3. | Process practice milling | Hair and dress arm long could entangled axis machine which turn. Exposed flakes used milling which hot could cause skin irritation. | | ### c. Drilling Pocess In the types of activities that exist in the drilling process there are potential hazards, namely: | No. | Type Activity | Potential Hazards | | |-----|-----------------------------|--|--| | 1. | Install eye Drill | Wounded because scratched drill bit which sharp | | | 2. | Install object work on vise | Installation of workpieces that are not tight can the drill bit to break and bounces that can hurt students. | | | 3. | Process Drill | Hair and dress arm long could entangled axis machine which turn Exposed to debris from the drilling hot can skin irritation | | Eine Society Journal | 4. | Clean chips used drilling | Used drilling or chips which generated usually long and sharp | |----|---------------------------|---| | | | and could hurt student hand. | | | | | # d. Grinding Process In the types of activities that exist in the grinding process there are potential hazards, namely : | No | Type of activity | Potential Hazards | | |----|---|--|--| | 1. | Installing the workpiece | Installing a workpiece that is not properly positioned can result in pinched hands. | | | 2. | Hone | Sparks resulting from grinding can be irritating if in contact with skin. The dust produced can interfere with breathing. Fingers can scald due to the heat of the workpiece that has been grinded. Sparks can ignite objects in the vicinity of flammable grinding machines. | | | 3. | Use of grinding machines on transportation routes | Metal sparks can hit other students. | | # e. Welding Process The welding process there are potential hazards, namely: | No. | Type Activity | Potential Hazards | | | |-----|---------------------------------|--|--|--| | 1. | Connecting welding mass pliers | If you connect the pliers when the time is out of focus, it can your hands to get pinched. | | | | 2. | Install electrode | When no be careful, your hand can pinched plier sholder electrode | | | | 3. | Process welding | If the ventilation system isn't good then smoke burning results welding can confined in the room and inhaled by students. Exposed to ultraviolet and infrared radiation red could cause irritation on skin. Splash results weld could caught student andcause scald or burns | | | | 4. | Process cool material | Hand can touched hot metal. | | | | 5. | Clean material with slag hammer | - You can hit your hand with a hammer if you not be carefully - Hand student can scratched sharp materials | | | ### f. Bench Work Process In the types of activities that exist in the bench work process, there are potential hazards, namely: | No. | Type Activity | Potential Hazards | |-----|--|---| | 1. | Hone Your hand can be pierced by sharp and fine bits of shavings | | | 2. | Saw off | Hand wounded and can scratched saw blade | | 3. | Work Plate | The potential of the student's hand is scratched by the sharp and rough edge of the plate | # 3. Determining the Level of Hazard Risk After getting the results from observations, interviews, and identifying the hazards, the next step is to determine the level of risk of these hazards. To determine the level of hazard risk using the HIRARC method, by obtaining the following results: ### a. Turning Process | No | Type of activity | Danger | Potential Hazards | Frequency | Severity | Risk
Ranking | Risk
Level | |----|--------------------------|---|--|-----------|----------|-----------------|---------------| | | | Sharp chisel | The use of sharp chisels can injure student's hands | 2 | 1 | 1 | Low | | | | | Can cause noise that 3 interferes with hearing | 2 | 6 | Moderate | | | 1. | Installing
Chisel | Dull chisel | Can result in broken chisels that can bounce and injured students | 1 2 | 2 | Low | | | | | | Generates
excessive heat that
can hit student's
hands | 2 | 2 | 4 | Low | | | | The chisel is
not properly
attached to the
tool post | Improper installation
can result chisel being
easily blunted and even
broken and bounced,
injuring students. | 2 | 2 | 4 | Low | | 2. | Installing the workpiece | The workpiece
is not properly
attached to the
chuck | Can cause the workpiece to be damaged and even bounce off injuring students | 2 | 1 | 2 | Low | | 3. | Laying the keys | Place the key close to the moving parts of the machine. | Causing the keys to shift and then bounce off injuring students | 1 | 3 | 3 | Low | |----|--------------------|---|---|---|---|---|----------| | | | Hot and sharp. | Being hit by a hot
turning former bounce
can cause akin
irritation | 3 | 2 | 6 | Moderate | | 4. | Turning
process | Long sleeve
wearpackand
long hair | Student with long
sleeve wearpack and
long hair can get
wrapped around when
the rotating machine
spindle | 1 | 3 | 3 | Moderate | Australian Standard on Risk Management AS/NZS 4360: 1999 # b. Milling Process | No | Type of activity | Danger | Potential Hazards Frequency | | Severity | Risk
Ranking | Risk
Level | |----|------------------------------------|---|--|---|----------|-----------------|---------------| | 1. | Installing the milling knife | Use of a
sharp
milling
knife | Injured by being
scratched by a sharp
milling knife | 2 | 1 | 2 | Low | | 2. | Mounting the workpiece on the vise | The workpiece
is not suitable
for placement | Installation of a workpiece that isn't tight can cause the workpiece or milling blade to break and bounce, injuring students | 2 | 1 | 2 | Low | | 3. | Process of milling the | Long sleeve
wearpack and | Student with long sleeve
wearpack and long hair
can get wrapped around
when the rotating
machine spindle | 1 | 3 | 3 | Moderate | | | | long hair | Exposed to hot
milling flakes can
cause skin irritation | 3 | 2 | 6 | Moderate | Australian Standard on Risk Management AS/NZS 4360 : 1999 # c. Drilling Process | No | Type of | Danger | Potential | Frequency | Severity | Risk | Risk | |----|--|---------------------------------------|---|-----------|----------|---------|----------| | | activity | | Hazards | | | Ranking | Level | | 1. | Installing the drill bit | Sharp drill bit | Student's hands can be scratched by a sharp drill bits. | 2 | 1 | 2 | Low | | 2. | Mounting the workpiece on the vise | Improper
workpiece
installation | That workpieces are not securely fastened can cause the drill bit to break and bounce. The student can be hit by drill bit. | 2 | 1 | 2 |
Low | | 3. | B. Drilling Long sleeve wearpack and long hair | | Student with long
sleeve wearpack and
long hair can get
wrapped around
when the rotating
machine. | 1 | 3 | 3 | Moderate | | | | Drilling
flakes | Exposed to hot
drilling flakes can
cause skin irritation | 3 | 2 | 6 | Moderate | | 4. | Cleaning up
drilling scraps | Long and
sharp
cuttings | The drilling marks or
scraps produced are
usually long and sharp
so they can injure
student's hands | 3 | 1 | 3 | Low | # d. Grinding Process | No | Type of activity | Danger | Potential
Hazards | Frequency | Severity | Risk
Ranking | Risk
Level | |----|--------------------------|--|-------------------------|-----------|----------|-----------------|---------------| | 1. | Installing the workpiece | Installing the workpiece is not in accordance with the placement | Can cause pinched hands | 2 | 1 | 2 | Low | | Can interfere with breathing. Grinding process Hot grinding object Fingers can scald due to the heat of the workpiece that has been grinded Use of grinding machines on Metal sparks can hit other students Town Low Low Low | | - | Grinding
sparks | Sparks resulting from grinding can be irritating if in contact with the skin. | 3 | 2 | 6 | Moderate | |---|----|---|---|---|---|---|---|----------| | Process Hot grinding object Fingers can scald due to the heat of the workpiece that has been grinded Use of grinding machines on Hot grinding object Fingers can scald due to the heat of the workpiece that has been grinded 1 1 1 Low | | | Grinding dust | can interfere with | 3 | 2 | 6 | Moderate | | grinding other students machines on | 2. | | | to the heat of the workpiece that has been | 2 | 2 | 4 | Low | | ransportation routes | | | grinding
machines on
transportation | _ | 1 | 1 | 1 | Low | # e. Welding Process | No | Type of activity | Danger | Potential
Hazards | Frequency | Severity | Risk
Ranking | Risk
Level | |----|---------------------------|---|---|-----------|----------|-----------------|---------------| | 1. | Connecting the pliers | Installing carelessly | Connecting the pliers if you don't concentrate can cause your hands to get pinched. | 2 | 1 | 2 | Low | | 2. | Installing the electrodes | Installing carelessly | If you're not careful, your hands can get pinched by the electrode holder. | 2 | 1 | 2 | Low | | 3. | Process
welding | The ventilation system is not good | The ventilation system is not good, so the smoke from the welding combustion is trapped in the room and inhaled by student. | 3 | 3 | 9 | High | | | | Exposure ray
ultraviolet and
infrared red | Exposure to radiation ultraviolet light and infrared could cause | 3 | 3 | 9 | High | | | | | irritation on skin. | | | | | |----|---|------------------------------|---|---|---|---|----------| | | | splash
results
welding | Result splash weld can
hit by students and
cause blister or wound
burn | 3 | 2 | 6 | Moderate | | 4. | Process cool
material | Object work | Hand can just touch metal hot | 3 | 1 | 3 | Low | | 5. | Process clean
material with a
hammer slag | Processingwith no careful | Can just hand
hammered if not be
careful | 2 | 1 | 2 | Low | | | | | Hand student can
scratched material
which sharp | 2 | 1 | 2 | Low | Australian Standard on Risk Management AS/NZS 4360 : 1999 ### f. Bench Work Process | No | Type of | Danger | Potential | Frequency | Severity | Risk | Risk | |----|------------|-----------------------------|---|-----------|----------|---------|-------| | | activity | | Hazards | | | Ranking | Level | | 1. | Hone | Sharp and smooth flakes | The hand is pierced
by sharp and fine
splinter shavings | 2 | 1 | 2 | Low | | 2. | Sawing | Sharp saw
blade | Hands can be injured
and scratched by saw
blades | 2 | 1 | 2 | Low | | 3. | Plate work | Sharp and rough plate edges | Can cause injury to students | 3 | 1 | 3 | Low | Australian Standard on Risk Management AS/NZS 4360: 1999 # g. Conditions at the Workshop | No | Workshop
Condition | Danger | Potential
Hazards | Frequency | Severity | Risk
Ranking | Risk
Level | |----|--------------------------------------|-------------------|---|-----------|----------|-----------------|---------------| | 1. | There are no instructions for use on | Machine use error | Students have the potential to make mistakes in operating | 1 | 3 | 3 | Moderate | | | 1.4 22 | | 11 1 | | 1 | 1 | | |----|---|---|---|---|---|----|-------------------| | | lathes, mills,
drills,
grinders,
welding and
bench work. | | machines that can
cause work
injuries/accidents | | | | | | 2. | There are no posters related to the importance of OHS and the dangers posed when using machines. | The attitude of students who are in different to the dangers of practicum | Students can be in different, act careless, so no know as a result and cause accident work | 2 | 1 | 2 | Low | | 3. | No
evacuation
route
instructions | It is not clear
which
evacuation
route exists | Process evacuation can
be delayed which cause
accident or events like
fire becomes the more
critical. | 1 | 4 | 4 | High | | 4. | The grinding area and the welding area are too close together | Differences in the use of PPE | Student/teacher could
experience eye injury
because of area
grinding and welding
too close. Because in
area grinding and
welding different PPE. | 1 | 2 | 2 | Low | | 5. | Extinguisher
light fire that
located outside
workshop | Inappropriate
placement offire
extinguishers | Cause panic on when it happened accident work as fire because of the fire extinguisher not at within the area workshop. | 1 | 4 | 4 | High | | 6. | There is a hand washing area in the machining room which can cause the wet floor to be slippery due to splashing water. | Slippery
floor | Floor which slippery
could cause
student/teacher
experience injury due to
slip | 2 | 2 | 4 | Low | | 7. | There are no markings for areas requiring special PPE such as grinding and welding areas. | Unclear
safety sign | Cause accident or
consequent disease
work/practicum which
is conducted
students/teachers. | 4 | 3 | 12 | High | | 8. | There is no safety in the | Sparks | Metal sparks resulting from grinding or grams | 4 | 2 | 8 | <mark>High</mark> | | grinding area | can hit students/teachers | | | | | | | |---|---------------------------|--|--|--|--|--|--| | | in the vicinity which | | | | | | | | | have the potential to | | | | | | | | | cause various diseases | | | | | | | | | if exposed continuously. | | | | | | | | Australian Standard on Birl Managament ASAITS 4260 , 1000 | | | | | | | | Australian Standard on Risk Management AS/NZS 4360: 1999 #### 4. Hazard Confirmation, Risk Level, and Hazard Control After conducting an analysis using the HIRARC method, you will get the potential hazards that occur, the level of risk that exists, then confirm with the head of the workshop. If it is correct, then plan to control the risk of the hazard. ### 5. Hazard Risk Control When it is known the identification of hazards, potential hazards, and the level of existing hazard risks, then plan to control these hazard risks. Controls carried out by VHS Taman Siswa 2 Jakarta area . ### a. Conditions at the Workshop | No | Workshop | Danger | Potential | Hazard | | Action Plan | | |----|---|---|---|--|--------|-------------|----------------| | | Condition | | Hazards | Control | Action | By Who | when | | 1. | There are no instructions for use on lathes, mills, drills, grinders, welding and bench work. | Machine use error | Students have the potential to make mistakes in operating machines that can cause work injuries/accidents | Provide information about the SOP for using the machine by attaching it to the machine | - | - | not
planned | | 2. | There are no posters related to the importance of OHS and the dangers posted when using machines. | The attitude
of students
who are
different to
the dangers
of practicum | Students can be in
different, Act
careless, so no
know as a result
and cause
accident work | Make posters about the importance and the dangers of prioritizing occupational safety and health by sticking it on the wall room | - | - | Not
planned | |
3. | No
evacuation
route
instructions | It is not clear
which
evacuation
route exists | Process evacuation can be delayed which cause accident or events like fire Becomes the | Provide evacuation route information by sticking a sticker or sign on the | - | - | Not
planned | | | | | more critical | floor or on
the wall of
the room | | | | |----|---|---|--|--|--|-------------------------|--------------------| | 4. | The grinding area and the welding area are too close together | Differences
in the use of
PPE | Student/teacher could experience eye injury because of area grinding and welding too close. Because in area grinding and welding different PPE his | Moving welding and grinding areas Provides a barrier between the welding area and grinding area | - | - | Not
planned | | 5. | Extinguisher
light fire
that located
outside
workshop | Inapprop
ria te
placeme
nt of fire
extinguis
hes | Cause panic on
when it happened
accident work as
fire because of
the fire
extinguisher not
at within the area
workshop. | Move the fire extinguisher into a machining workshop that can be easily reached | Move the fire extinguisher to a machine room that is easily accessible and visible | head of the
workshop | Done this semester | | 6. | There is a hand washing area in the machining room which can cause the wet floor to be slippery due to splashing water. | Slippery | Floor which
slippery could
cause
student/teacher
experience injury
due to slip | Moving the handwashing area to the outside of the machining workshop, for example, next to the entrance to the machining workshop | - | - | Not
planned | | 7. | There are no markings for areas requiring special PPE such as grinding and welding areas. | Unclear
safety sign | Cause accident or consequent disease work/practicum which is conducted students/teachers. | Provide information about areas that require special PPE by sticking it on the wall or on the machine or tool used | - | - | Not
planned | © 2022 Fire Society Journal | 8. | There is no safety in the grinding area | Sparks | Metal sparks resulting from grinding or grams can hit students/teachers in the vicinity which have the potential to cause various diseases if exposed continuously. | Provide
barriers or
provide
insulation,
especially in
the grinding
area | - | - | Not
planned | |----|---|--------|---|---|---|---|----------------| |----|---|--------|---|---|---|---|----------------| # b. Turning Process | No | Type of activity | Danger | Potential
Hazards | Hazard
Control | Action | Action
Plan
By Who | When | |----|----------------------|--------------|---|--|---|----------------------------------|--------------------| | 1. | Installing
Chisel | Sharp chisel | The use of
sharp chisels
can injure
students hands | When installing / replacing the tool do not hold the tip of the tool. Position holding the chisel securely | Give direct
directions
about how
to install
and replace
chisel
before to do
practice | Teacher
with head
workshop | Done this semester | | | | Dull chisel | Can cause
noise that
interferes
with hearing | Sharpen the chisel. if the problem is not resolved then you should use earplugs | Provide direct directions on how to install and replace the chisel before doing the practicum | Teacher
with head
workshop | Done this semester | | | | | Can result in
broken
chisels that
can bounce
and injure
students | Use a chisel that is still sharp and safe to use as well as the appropriate placement so that it doesn't loosen on the tool post | Provide direct directions on how to install a chisel on the toolpost before doing the practicum | Teacher
with head
workshop | Done this semester | | | | | Can cause
excessive
heat and
touch
students
hands | Use coolant during the turning process. If you have to remove the chisel, wait until cold chisel | Warn
students not
to hold the
chisel right
away if it
has not been
cooled | Teacher
with head
workshop | Done this semester | |----|--------------------------------|---|--|---|--|----------------------------------|--------------------| | | | The chisel is
not properly
attached to
the tool post | Improper
installation can
cause the chisel to
be easily blunted
and even broken
and bounced,
injuring students | Always check
the center
position of the
chisel, make
sure the bolts
on the toolpost
bind the chisel
well | Always give
directions to
always check
the chisel on
the toolpost is
tight or not | Teacher
with head
workshop | Done this semester | | 2. | Installing
the
workpiece | The workpiece is not properly attached to the chuck | Can cause the
workpiece to
be damaged
and even
bounce off
injuring
students | Make sure the
workpiece is
gripped
properly and the
workpiece
feeding process
is not too heavy
in | Always provide direction to ensure that the workpiece is properly secured to the chuck | Teacher
with head
workshop | Done this semester | | 3. | Laying
the keys | Place the key close to the moving parts of the machine. | Can cause the
keys to shift
and then
bounce off
injuring
students | Do not put keys
or tools on a
fixed head,
because they can
fall on the
spindle when
rotating | Always remind students not to carelessly put tools around the machine at the same time practice | Teacher
with head
workshop | Done this semester | | 4. | Turning process | Hot and
sharp. | Being hit by a hot turning former bounce can cause irritation to the skin | Protects sensitive body parts, such as the eyes. Can also use cover / cover on spindle | - | - | Not
planned | | | | Long sleeve
shirt and
long hair | Wearpacks that
have long sleeves
and long hair can
get wrapped
around the
rotating machine
spindle | Shaving hair
without
wearing long
sleeves and
wearing a hat if
necessary | Make rules to always keep students hair clean and tidy | Teacher
with head
workshop | Done this semester | # c. Milling Process | No | Activity Type | Danger | Potential
Hazards | Hazard
Control | | Action
Plan | | |----|---|---|---|---|---|----------------------------------|-----------------------| | | | | | | Action | By Who | when | | 1. | Installing
the
milling
knife | Use of a
sharp
milling
knife | Injured by
being
scratched by
a sharp
milling knife | When installing/replacing the blade, do not touch and touch the bottom edge of the blade. Position the blade securely. | Provide direct directions on how to install and replace the chisel before doing the practicum | Teacher
with head
workshop | Done this semester | | 2. | Mounting
the
workpiece
on the vise | The workpiece is not suitable for placement | Installation of
a workpiece
that isn't tight
can cause the
workpiece or
milling blade
to break and
bounce,
injuring
students | Make sure the vise that binds the workpiece is in a tight position and is not backless (dol). During the milling process, always check whether the vise is still binding workpiece tightly. | Always give
direction and
supervise to
ensure the
workpiece is
properly
checked on
the chuck | Teacher
with head
workshop | Done
this semester | | 3. | Process of
milling the
workpiece | Long sleeve
wearpeack and
long hair | Hair and long sleeves can get caught in the rotating shaft of the machine | Shave hair, not long. Stand not too closeto the rotating parts of the machine, or wear a hat if necessary | Make rules to
always keep
students hair
clean and tidy | Teacher
with head
workshop | Done this
semester | | | | | Exposed to hot
milling flakes
can cause skin
irritation | Protects sensitive
body parts, such
as the eyes. Can
also use a
cover/cover | Provide rules
to always use
PPE such as
goggles and
provide cover
on the
machine | Teacher with
head
workshop | Done this semester | # d. Drilling Process | No | Type of | Danger | Potential | Hazard | | Action Plan | | |----|---|---------------------------------------|---|---|--|----------------------------------|--------------------| | | activity | | Hazards | Control | Action | By Who | when | | 1. | Installing
the drill
bit | Sharp drillbit | Students
hands can be
scratched by
a sharp drill
bit | When installing / replacing the tool do not hold the tip of the tool. Position the chisel securely. | Provide direct directions on how to install and replace the chisel before doing the practicum | Teacher
with head
workshop | Done this semester | | 2. | Mounting
the
workpiece
on the vise | Improper
workpiece
installation | Installation of
a workpiece
that is not
tight can
cause the
drill bit to
break and
bounce off the
student | Make sure the vise that binds the workpiece is in a tight position and is not stuck. | Always giving direction and supervising to ensure the workpiece is properly checked on gripper | Teacher
with head
workshop | Done this semester | | 3. | Drilling
process | Long sleeve
shirt and long
hair | Hair and long
sleeves can
getcaught in
the engine
shaft that
rotates | Shave hair, not long. Stand not too close to rotating machine parts, or if necessary wear a hat | Make rules to
always keep
students hair
clean and tidy | Teacher
with head
workshop | Done this semester | | | | Drilling flakes | Exposed to
hot drilling
flakes can
cause skin
irritation | Protects sensitive body parts, such as the eyes. Can also use the cover/cover on the spindle | Provide
rules to
always use
PPE such as
goggles and
provide | Teacher
with head | Done this semester | | 4. | Cleaning
up
drilling
scraps | Long and
sharp
cuttings | The drilling marks or scraps produced are usually long and sharp so that they can injure students hands | Remove the entangled and snagged scrapsusing pliers. Rotated counter clockwise to untie it. | Always remind students to wear gloves to protect their hands from sharp cuts | Teacher
with head
workshop | Done this semester | # e. Grinding Process | No | Type of activity | Danger | Potential
Hazard | Hazard
Control | Action | Action
Plan
By Who | when | |----|--------------------------------|--|---|--|--|----------------------------------|--------------------| | 1. | Installing
the
workpiece | Installing the workpiece is not in accordance with the placement | Can cause pinched hands | Position your
hands when
installing the
workpiece,
don't hold the
vise | Always giving direction and supervising to ensure the workpiece is properly checked on gripper | Teacher
with head
workshop | Done this semester | | 2. | Grinding process | Grinding
sparks | Sparks resulting from grinding can be irritating if in contact with the skin | Make sure the grinding machine uses a cover so that the sparks from grinding do not directly hit the students. | Provide rules
to always use
PPE such as
goggles and
cover the
machine | Teacher
with head
workshop | Done this semester | | | | Grinding dust | The dust
produced can
interfere with
breathing | placed near the exhaust fan. Immediately rinse body parts exposed to residual dust after grinding so as not to cause irritation or itching. itchy skin | - | - | Not
planned | | | | Hot grinding object | Fingers can
scald due to
the heat of the
workpiece
that has been
grinded | Provides
coolant for
workpieces that
have been
grinded | Warn
students not
to hold the
chisel right
away if it has
not been
cooled and
use it always
gloves | Teacher
with head
workshop | Done this semester | | | | Use of grinding machines on transportation routes | Metal sparks
can hit other
students | Move the grinding machine to a safer place so it doesn't hit other | Move it to a
safer place so
as not to
interfere with
practicum | Teacher
with head
workshop | Done this semester | | | | students | activities | | l | |--|--|----------|------------|--|---| | | | | | | l | | | | | | | J | # f. Welding Process | No | Type of activity | Danger | Potential
Hazards | Hazard
Control | | Action
Plan | | |----|---------------------------------|--|---|---|---|----------------------------------|--------------------| | | | | | | Action | By Who | when | | 1. | Connecting the pliers | Installing
carelessly | Connecting the pliers if you don't concentrate can your hands to get pinched. | Always wear gloves and concentration during practicum. | Remind and supervise students to always be careful when connecting the pliers before practice. | Teacher with head workshop. | Done this semester | | 2. | Installing
the
electrodes | Installing
carelessly | If you're not careful, your hands can get pinched by the electrode holder. | Always wear gloves and focus during practicum. | Remind and
supervise
students to
always be
careful when
connecting the
pliers before
practice. | Teacher
with head
workshop | Done this semester | | 3. | Process
welding | The ventilation system is not good | The ventilation system is not good, so the smoke from the welding combustion is trapped in the room and inhaled by student. | Engineer the welding area to provide exhaust so that the welded fumes can be carried out of the room. | - | - | Not
planned | | | | Exposure to
ultraviolet
and infrared
rays | Exposure to ultraviolet and infrared radiation can cause skin irritation. | Always use
anapron
and
welding
mask when
doing
practicum | Remind and
supervise
students to
always be
careful when
welding and
not to joke | Teacher
with head
workshop | Done this semester | | | | Welding splash | Welded sparks
can hit a person
and cause a
scald or burn | Always use gloves, an apron, and a welding mask so that the sparks from the weld don't directly hit the body student | Remind and
supervise
studentsto
always be
careful and use
PPE when
doing welding
and not to joke | Teacher with
head
workshop | Done this semester | |----|---|--------------------|--|--|---|----------------------------------|--------------------| | 4. | Process
cooling
material | Object
work | Hand can be
touched by
hot metal | Wear gloves
and make sure
the workpiece
is cool with
coolant so that
safe to hold | Warn students
not to hold the
chisel directly
if it has not
been cooled
and always
use gloves. | Teacher
with head
workshop | Done this semester | | 5. | The process
of cleaning
the material
with a slag
hammer | work
carelessly | The hand can be hit by hammer if not be careful The hand can be scratched by sharp material | Use gloves
when
hammering in
the workpiece
and focus
while doing so | Giving directions to students to always wear gloves and be careful during practicum | Teacher
with head
workshop | Done this semester | # g. Bench Work Process | No | Type of activity | Danger | Potential
Hazard | Hazard
Control | | Action
Plan | | |----|------------------|-------------------------------|--|--|---
----------------------------------|--------------------| | | activity | | Tusuro | Convior | Action | By Who | When | | 1. | Hone | Sharp and
smooth
flakes | fine
splinter
shavings | Always clean the
surface of the file
with a wire brush
especially before
starting hone | Remind
students
to always
clean the
file before
and after
practicum | Teacher with
head
workshop | Done this semester | | 2. | Sawing | Sharp saw
blade | Hands can
beinjured
and
scratched
by saw
blades | Start by sawing
slowly with a pulling
motion until it starts
smooth and then put
pressure on the saw | Always
provide
direction and
supervision to
ensure the
plate bending | Teacher with
head
workshop | Done this semester | | | | | | | process is in accordance with theory | | | |----|---------------|-----------------------------------|--------------------------|--|---|----------------------------------|--------------------| | 3. | Work on plate | Sharp and
rough plate
edges | Students
can get hurt | Bend the remaining plate when cutting using manual scissors. cutting the sharp corners of the plate | Always provide direction and supervision to ensure the plate bending process is in accordance with theory | Teacher with
head
workshop | Done this semester | The results of the research from all the descriptions of the activities above at the Machining Workshop of VHS | 1 aman | Siswa 2 | Jakarta | can | be s | een | in the | table | as follows: | |--------|-----------------------|-------------------|-----|----------|------|---------|----------------|-------------| | No. | Indicator | Risk of
Danger | | | | | Hazard Control | | | | | Zunger | Low | Moderate | High | Extreme | Planned | Unplanned | | 1 | Workshop Condition | 8 | 3 | 1 | 4 | - | 1 | 7 | | 2 | Turning Activities | 9 | 6 | 3 | - | - | 3 | 1 | | 3 | Milling Activities | 4 | 2 | 2 | - | - | 4 | - | | 4 | Drilling Activities | 5 | 3 | 2 | - | - | 5 | - | | 5 | Grinding Activities | 5 | 3 | 2 | - | - | 4 | 1 | | 6 | Welding Activities | 7 | 4 | 1 | 2 | - | 6 | 1 | | 7 | Bench Work Activities | 3 | 3 | - | - | - | 3 | - | From the table above, data analysis was carried out using the model technique of *Miles and Huberman* by reducing data, presenting data, and drawing conclusions or verifying that the results of the research there were 41 hazards identified by: - 1. 24 low hazards whose risk levels can still be managed. An example of a low risk hazard is getting injured while installing a sharp chisel; injured because of placing an object that is not in the right place so that the milling blade bounces off; scratched by a sharp drill bit; and scalding hands when handling grinding objects. - 2. 11 moderate hazards whose risk level is classified as serious injury and can be treated in hospital. Examples are exposed to sparks from welds that cause burns; hair or clothes that get wrapped around the machine while it is turning; exposed to hot milling flakes that cause skin irritation; and hearing loss caused by the noise generated by blunt chisels. - 3. 6 high hazards with high risk of causing serious injury and record permanent and substantial financial losses. Examples are not exposed to ultraviolet and infrared radiation which can cause skin irritation; a bad ventilation system can cause students to inhale the fumes of the combustion resulting from welding; placement of fire extinguishers that can cause panic and large fires; the absence of an evacuation route which makes the accident worse; and the absence of safety in the grinding area which causes the metal to be splashed from the grinding results which has the potential to be exposed to various diseases if exposed continuously. There are several controls that have been planned by the school to reduce the dangers that occur in the workshop. There are 26 planned controls, such as removing light fire extinguishers; using a chisel that is still sharp and safe; using coolant during the turning process; shaving hair and not wearing long-sleeved wearpack when practicum; and move the grinding machine to a safer place. In addition, teachers and workshop heads always remind students before practicum to comply with occupational safety and health in the workshop. There are also controls that have not been planned by the school as many as 10 controls, for example providing information on SOPs; making posters about occupational safety and health; provide evacuation routes; engineer the welding area to provide exhaust; provide a barrier to the grinding area; and moving the hand washing station outside the machining workshop. #### CONCLUSION Based on the research data, it can be concluded that from analyzing using the HIRARC method with the model technique of Miles and Huberman, there are 41 hazards were identified with a risk level consisting of 24 low hazards, 11 moderate hazards, and 6 high hazards. Meanwhile, the risk control in the workshop consists of 26 planned risk control measures and 10 unplanned risk control measures. The researcher suggests that the management of VHS Taman Siswa 2 Jakarta can carry out internal audits and scale checks by paying attention to the occupational safety and health culture in the machining workshop area by involving all workshop users, with the head of the workshop, teachers, technicians, and students. #### REFERENCES - 1. Martiningsih, W., et al., Repair of The Bracket and Clutch Mechanism On Centrifugal Pump For Firefighter Motorcycle. MATEC Web of Conferences, 2018. 218: p. 04009. - 2. Sutrisno, H.H., *The Development of a Centrifugal Pump Nozzle for Firefighting Motorcycle*. International Journal of Mechanical Engineering and Robotics Research, 2021: p. 321-327. - 3. Sutrisno, H.H. and Triyono, *Improvement of Performance and Design on Firefighter Motorcycle as a Fast Response to Decrease Fire Disaster in a Densely Populated Area*. International Journal of Mechanical Engineering and Robotics Research, 2019: p. 655-659. - 4. Sutrisno, H.H., et al., *The identification of fire potentials in oil mining area on Minas Sumatera Operations-Indonesia by manual assessment method.* IOP Conference Series: Materials Science and Engineering, 2021. 1098(6): p. 062093. - 5. Wulandari, B., Analisis Keselamatan dan Kesehatan Kerja Bengkel dan Laboraturium Jurusan Pendidikan Teknik Elektronika dan Informatika FT UNY. Elinvo (Electronics, Informatics, and Vocational Education), 2018. 3(1): p. 1-8. - 6. Yamin, M., Perilaku Keselamatan Dan Kesehatan Kerja (K3) Siswa Dalam Pembelajaran Praktikum Di Smkn 2 Sidenreng. Jurnal Syntax Admiration, 2020. 1(3): p. 207-214. - 7. Erfian, M. and N.E. Raharjo, Evaluasi Penerapan Keselamatan Dan Kesehatan Kerja (K3) Pada Praktik Finishing Bangunan Smk Negeri 2 Yogyakarta. Jurnal Pendidikan Teknik Sipil, 2020. 2(2): p. 139-148. - 8. Amiruddin, J., H.H. Sutrisno, and Triyono, *The Efforts to Increase the Awareness of the Danger of Fire by Using a Daily Assessment on the Safety Level of The Evacuation Route in Apartements (Vertical Housing)*. International Journal of Innovative Technology and Exploring Engineering, 2019. 8: p. 5. - Sutrisno, H.H., The selection of flying roller as an effort to increase the power of scooter-matic as the main power of centrifugal pump for fire fighter motor cycle. IOP Conference Series: Materials Science and Engineering, 2018. 324: p. 012055. - 10. Sutrisno, H.H. and Triyono, *Designing a Firefighter Motorcycle as an Effort to Provide an Early Response to Fire Disaster*. Journal of Mechanical Engineering, 2017. SI 4: p. 13. - 11. Sutrisno, H.H., et al., Analysis of fire rate on paper coated with the silica gel from rice husk ash. Journal of Physics: Conference Series, 2019. 1402: p. 044052. - 12. Sutrisno, H.H., R. Wirawan, and Triyono, *Uji Kemampu-Bakaran Pembungkus Kabel NYM Berstandar SNI Dengan Differecial Scanning Calorimetric*. SETRUM, 2013. 2: p. 3. - 13. Triyono and H.H. Sutrisno, *Implementation of VDI 2221 Method for Firefighter Motorcycle Design*. International Journal of Innovative Technology and Exploring Engineering, 2019. 8(6S): p. 5. - 14. Sutrisno, H.H., J. Amiruddin, and Triyono, *Improving the Evacuation Time for 8-story Office Building Using Pathfinder* International Journal of Mechanical Engineering & Technology, 2018. 7: p. 4. - 15. Sutrisno, H.H. and F. Fransisca Maria, *The Full Scale Fire Extinguisher Test For Silica Gel From Rice Husk Ash.* Journal of Critical Reviews, 2020. 7(09): p. 2070.