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Abstrak  

Pada makalah ini telah dirumuskan tingkat-tingkat eksitasi dari persamaan Gross-Pitaevskii satu dimensi yang 
menggambarkan dinamika uap Bose-Einstein dengan mengganggap bahwa persamaan tersebut adalah 
sebuah persamaan osilator kuantum makroskopik. Dalam kasus ini, kami mengambil persamaan Gross-
Pitaevskii yang tergandeng dengan fungsi bergantung waktu yang dianggap sebagai sebuah potensial 
eksternal. Potensial tersebut menciptakan pengaruh penguatan atau pelemahan dari perambatan pulsa di 
dalam serat optik nonlinear dan pengaruhnya telah diamati sebagai soliton terang atau gelap melalui hasil 
simulasi. Di dalam makalah ini, teori perturbasi bergantung waktu telah digunakan untuk mendapatkan 
tingkat-tingkat eksitasinya dan akan ditunjukkkan pula bahwa tiap-tiap tingkat tersebut mempunyai koreksi 
energi yang berkaitan dengan potensial eksternal yang bersangkutan. Meskipun tiap-tiap tingkat eksitasi 
tersebut telah didapat, persamaan differensial untuk koefisien-koefisien yang bersangkutan harus 
diselesaikan untuk mendapatkan gambaran lengkap dari solusi fungsi gelombang umum.    

Abstract 

We have formulated the excitation states of one-dimensional Gross Pitaevskii equation representing the 
dynamics of Bose-Einstein condensate, by treating the equation as a macroscopic quantum oscillator. In this 
letter, we concern at the Gross-Pitaevskii equation coupled by time-dependent function as an external 
potential. The potential itself creates the gain or loss effect of pulse propagation in nonlinear fiber optics and 
its effects have been observed as a dark or a bright soliton by simulating the equation. This time, we apply the 
time-dependent perturbation theory to obtain the excitation states and we also show that each excitation 
state has the energy correction corresponding to the external potential. Although we can formulate each 
energy state, one has to solve the differential equation for the coefficients if one wants to know the complete 
description of the general wave solution. 
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1. Introduction  

It has been well-known that the 

verifications of Bose-Einstein condensation 

(BEC) have been attracting many physicists to 

formulate the appropriate mathematical model. 

The verifications were coming from the 

experimental results by atomic cooling using 

sodium, rubidium, and lithium [1]. Besides, 

these results lead to develop the applications, 

for the best example how to built the atom laser 

and how to determine the best laser beam [2].  

It has been noted that Gross and Pitaevskii have 

proposed the model in the case of discussion on 

weakly interacting bosons at very low 

temperature by atomic cooling and trapping. 

The first model is well-known as the three-

dimensional Gross-Pitaevskii equation (GPE). 

Some literatures and papers have been 

published to review the characteristic of GPE 

and then compare it with some experimental 

results [3-5]. Although GPE has been well built, 

the equation has been widely explored by 

applying the cylindrical symmetry to reduce 

three-dimensional GPE into one-dimensional 

GPE [6-10]. The interesting simulations have 



T. B. Prayitno JRSKT  Vol. 2 No. 1 Juni 2012 

 

Jurnal Riset Sains dan Kimia Terapan ISSN: 2302-8467 131 

 

shown that the dynamical condensate can be 

represented as a stable wave, so called soliton 

which can be dark or bright which propagates in 

the vertical axis. Since the GPE itself is nonlinear 

Schrödinger equation (NLSE) with pseudo 

potential, the solution like soliton has unique 

characteristics. Some authors have deeply 

considered the NLSE and founded that the 

equation has been used to consider not only in 

atom laser, but also in some areas of active 

researches, for example pulse propagation in 

nonlinear optics and twin-core optical optics 

[11-14]. 

 Some authors have compared the theoretical 

properties and experimental results by 

numerical method since the GPE has no 

analytical solution, except if one considers the 

Thomas Fermi approximation [8, 10]. By 

developing variety of other experiments, 

especially in atomic cooling and trapping, the 

ordinary GPE needs an extension to verify the 

experiment results. In Ref. [15], authors have 

extended GPE by adding time-dependent 

potential to explore the gain-loss aspects in 

pulse propagation in collapse-revival of the 

condensate. Although the above equation has 

no analytical solution, they can interpret the 

final results that it creates the soliton solutions 

by determining the ansatz solution of wave 

function and choosing the appropriate the 

potential. There is an interesting case in GPE, 

that is, for the small aspect in the nonlinear 

term, the GPE reduces to one-dimensional 

macroscopic quantum oscillator as in the 

ordinary quantum mechanics. Therefore, it is 

possible to construct all energy level states in 

GPE coupled by time-dependent potential by 

applying time-dependent perturbation theory by 

assuming that not only the nonlinear term 

should be small but also the time-dependent 

potential. 

To obtain the excitation states, we use 

the similar method proposed by Kivshar et al. [8] 

who suggested that the general solutions of 

one-dimensional GPE can be obtained by 

applying the linear superposition of normalized 

eigenfunctions in macroscopic quantum 

oscillator. In this paper, we make some relevant 

assumptions and appropriate initial conditions 

in order to formulate the level energy states and 

the expansion coefficients. However, to obtain 

the analytical solution of the coefficients, one 

must solve the differential linear equation since 

all the coefficients is time-dependent. We also 

prove that each coefficient has its differential 

equation since it depends on even or odd 

eigenfunctions.  

We organize this paper as follows: in 

Sec. 2, we transform three-dimensional GPE 

using dimensionless variables into one-

dimensional GPE. Next, we apply our one-

dimensional nonstationary GPE which has been 

obtained in the previous section to derive some 

excitation states in Sec. 3. Finally, in Sec 4, we 

state our conclusions based on the previous 

results. 

 

2. Methods 

This time, we initially reduce three-dimensional 

GPE into one-dimensional GPE by transforming 

all coordinates and the wave function, and 

finally using the cylindrical symmetry about the 

vertical axis. Some authors has written the 

evolution of  the condensate wave function, 

trapped by three-dimensional anisotropic 

function, and containing the time-dependent 

potential describing gain or loss effect as [15]                   
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where ),( tr


  is the condensate wave 

function, the atomic interaction is represented 

by maU /4 2  and is proportional to 

positive or negative s-wave scattering length a, 

)(rV


 is the anisotropic parabolic trapping 

potential obeying  
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where 222 yxr   and )(t  represents the 

time-dependent external potential called gain-

loss term. 

Here, we have used the cylindrical 

coordinate system with the usual definition 

),,( zrr 


and state that z  represents the 

frequency along z direction and r  describing 

the frequency along radial direction. To reduce 

the above three-dimensional GPE in Eq. (1) into 

one-dimensional GPE, we initially scale the 

cylindrical coordinate system into dimensionless 

coordinates 0/ ar  and 0/ azs  , and then 

we also transform the time coordinate, the 

wave function, and the external potential by the 

following relations 2/tzr  , 

Natzrsu /),,(),,(
3

0 , and 

zrtitg  2/)()(  .  Some authors have 

defined and written some physical quantities as 

follows [6, 16]: the length of harmonic oscillator 

zrma /0   with z  is the quotient 

between  z  and r , and also assumed very 

small 1z  , the number of interaction 

bosons in trapped in the parabolic potential is 

represented by the normalization of its wave 

function rdN
32

  . By applying all the 

above transformations, we rewrite the GPE in 

Eq. (1) in dimensionless equation as [17] 
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where we have defined 0/8 aNaQ  .   

To get the final purpose, we have to separate 

the appropriate variables by defining the new 

function. Kivshar et al. have suggested that the 

final function should be written as [8]                                          

 iessu 2),()(),,(  .                                       

(4)                                                                                                               

In addition, Kivshar et al. have also chosen that 

the solution for )(  is 

                                              

 2/exp)( 2 C ,                                          

(5)                                                                                                                           

where  /C  since one of the two 

differential equations which has been obtained 

is well-known as the differential equation of 

quantum harmonic oscillator written in polar 

coordinate. By this fact, after inserting the 

solution in Eq. (5) into Eq. (3), we obtain one-

dimensional GPE written as 
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Here, we have adsorbed the obtained 

constant in the nonlinear term into Q . If we 

strongly observe the Eq. (6), it is clear that one-

dimensional GPE is a kind of nonlinear 

Schrödinger equation (NLSE) coupled by 

external potential representing by parabolic 

trapping potential and gain-loss potential. 

3. Results and Discussion 

In this section we concern to derive each 

excitation energy level of the one-dimensional 

GPE which has been written in Eq. (6). Although 

the one-dimensional GPE is a kind of NLSE, the 

equation can be also considered as one-

dimensional quantum harmonic oscillator if one 

assumes that the nonlinear term and the 

function of gain-loss term are very small. The 

consideration has been observed by some 

authors and they have also presented their 

numerical results in their papers [1, 8, 16]. 

However, in this paper we extend the 

suggestion proposed by Kivshar et al. to get our 

purposes. For the first step, we rewrite the 

important results proposed by Kivshar et al. 

Based on their suggestion, we extend that the 
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time-dependent perturbative solution for one-

dimensional GPE can be written as [8] 
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where E  is the total energy of system and n  

are the eigenfunctions of quantum harmonic 

oscillator written in dimensionless unit as 
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where nH  are the Hermite polynomials written 

also in dimensionless unit as 
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In addition, the energy level of quantum 

harmonic oscillator in dimensionless unit can 

also be written as 12  nEn  for ,....2,1,0n

. 

In our previous paper [17], it has been 

derived the ground state energy of the one-

dimensional GPE by applying the perturbative 

solution using the above equations. This time, 

we extend our case to obtain some excitation 

energy levels by applying the same procedures. 

The procedures are applied as follows: we 

substitute the solution in Eq. (7) into Eq. (6), 

then we multiply both sides by the conjugate 
*

m , and finally we integrate over all space. 

We obtain the final result as [17] 
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where mB  states the derivative of mB  respect 

to   and  
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Now, we have completely obtained our 

materials to continue our discussions. To obtain 

each excitation state, we sign the index of m  in 

Eq. (10) started from one. Here we only 

describe first and second excitations, since 

other excitations can be obtained by applying 

the same procedures  

 First excitation 

By inserting the value of 1m  into Eq. (10) and 

assuming that mBB 1  for 1m , we find the 

expression 

                   ))()(()( 111  gEEBB 
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2

1 )()(   BBQ .                    (12)                                                                 

To obtain the energy of the first excitation, we 

have to determine the appropriate initial 

condition. Since we only concern at the first 

excitation, we can assume that at 0  our 

system is in the first excitation and 

)0()0( gg  . So, by applying the condition 

we have to give the initial conditions as 

                                 001 )0( B  an 0)0(1 B ,                                         

(13)                                                                                                                 

we obtain our energy of first excitation as 

                                        

1111

2
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(14)                                                                                                               

Based on the fact that n  consist of even 

functions (for even n) and odd functions (for 

odd n), we can solve the appropriate 

coefficients as 

                        

0))()(()(   gEEBB nnn
 , for even n                         

(15)                                                                                 

and 
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 Second excitation 

By applying the above procedures, we take the 

value of 2m  into Eq. (10) and also assuming 

that mBB 2  for 2m , we find the 

expression 

                     ))()(()( 222  gEEBB 
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This time, we assume that at 0  our system 

is in the second excitation and )0()0( gg 

. So, by applying the similar condition we have 

the initial conditions as 

                                          002 )0( B  and 

0)0(2 B ,                                         (18)                                                                                                               

we obtain our energy of second excitation as 
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Based on the same fact that n  consist of even 

functions (for even n) and odd functions (for 

odd n), we can solve the appropriate 

coefficients as 
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(20)                                                                                  

and 
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All the above coefficients can be solved 

both analytically and numerically by considering 

other initial conditions by observing the 

appropriate experiment results 

 

4. Conclusion 

We have formulated some excitations of 

energy state of GPE, containing time-dependent 

potential by applying time-dependent 

perturbation theory, by extending the previous 

work of Kivshar et al. [8] in addition, it is 

possible to construct the higher level energy 

and discuss it with various scattering length 

condensates, a, since the scattering length 

describes the interaction of atom condensates. 

Based on the final results, we conclude that it is 

possible to obtain the simulation of general 

wave function solution if we can solve 

analytically the differential equation for 

coefficients by finding the appropriate initial 

conditions. However, we also can solve them by 

extending the coefficients into power series 

using the Frobenius method. In addition, if one 

wants to compare the final results with the 

experimental results, one has to choose the 

appropriate time-dependent potential, for 

further discussions one can see Ref. [15].   

Although we are not dealing with the 

simulation, we can predict that the graphical 

solution of the condensate density obtained by 

the absolute square of the general wave 

function solution should be localized. The 

prediction is based on the fact that 

eigenfunctions in macroscopic quantum 

oscillator used here, have actually Gaussian 

form. Finally, we hope that this discussion will 

stimulate the simulation efforts that can be 

useful to develop the application both in science 

and engineering, especially in nonlinear optics 

and atom laser. 
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