KAJIAN PARAMETER MARSHALL DENGAN MENGGUNAKAN LIMBAH SERBUK KERANG HIJAU SEBAGAI FILLER CAMPURAN LAPIS ASPAL BETON

Andhika Putra¹, Tri Mulyono², dan Yusfita Chrisnawati³

¹Pendidikan Teknik Bangunan, FT, UNJ ²D3 Teknik Sipil, FT, UNJ Email: trimulyono@unj.ac.id ³D3 Transportasi, FT, UNJ Email: trimulyono@unj.ac.id

ABSTRAK

Penelitian ini bertujuan untuk mengetahui apakah penggunaan serbuk cangkang kerang hijau sebagai bahan pengisi alternatif pada campuran Laston dapat memenuhi parameter Marshall atau tidak. Metode yang digunakan dalam penelitian ini adalah metode eksperimental yang mengkaji parameter Marshall pada berbagai persentase penggunaan serbuk cangkang kerang hijau dengan kadar 0%, 6,5%, 7,5%, dan 8,5% sebagaialternatif dari separuh pengisi. Percobaan serbuk cangkang kerang hijau menghasilkan tingkat filler maksimum sebesar 7,5% dengan nilai stabilitas 987.478 kg, nilai aliran 3,70 mm, nilai Marshall Quotient 266,738 kg/mm, nilai Void in Mineral Aggregates di 17,597%, Void diisi dengan nilai Bitumen 71,958% dan nilai Void In the Mix 4,709%. Dari hasil ini dapat disimpulkan bahwa serbuk cangkang kerang hijau dapat digunakan sebagai bahan pengisi alternatif pada campuran aspal AC-WC untuk jalan raya yang padat dengan persentase kadar bahan pengisi sebesar 7,5%.

Kata kunci: serbuk cangkang kerang hijau, campuran aspal beton, parameter marshall, filler

ABSTRACT

This inquiry aims to investigate whether the use of green mussels shell powder as an alternate filler in Laston mix can meet the Marshall parameter or not. Method used in this inquiry is experimental method that examines Marshall parameter at various percentages of green mussels shell powder use in which their level are 0%, 6,5%, 7,5%, and 8,5% as an alternate of half of filler. The experiment of green mussels shell powder is generate a maximum level of filler at 7,5% percentage with stability value in 987,478 kgs, flow value in 3,70mm, Marshall Quotient value in 266,738 kgs/mm, Void in Mineral Aggregates value in 17,597%, Void Filledwith Bitumen value in 71,958% and Void In the Mix value in 4,709%. By this result, it can be concluded that green mussels shell powder can be used as an alternate filler in AC-WC asphalt mix for heavy traffic road with 7,5% percentage of filler level.

Keywords: green mussels shell powder, concrete asphalt mix, marshall parameter, filler

PENDAHULUAN

Indonesia mengenal dua jenis konstruksi lapisan perkerasan jalan, yaitu perkerasan kaku yang dibuat dari beton semen dan perkerasan lentur yang dibuat dari campuran aspal dan agregat. Perkerasan lentur ada yang bersifat non- struktural seperti Burtu, Burda, Latasir, Buras, Latasbum, dan HRS-WC danstruktural seperti Lapen, Lasbutag, Laston (Putra, Dewi, & Pataras, 2015).

Laston yang direncanakandi Indonesia setara dengan spesifikasilaston Bina Marga. Digunakan untuk jalan- jalan dengan lalu lintas berat, tanjakan, pertemuan jalan dan daerah-daerah lainnya di mana permukaan menanggung beban rodayang berat. Lapis aspal beton diperuntukan untuk kelas lalu lintas berat dapat ditinjau dari ketentuan parameter Marshall menurut bina marga tahun 2010 dan penetrasi aspal yang dipakai. Metode Marshall berprinsip pemeriksaan stabilitas dan kelelehan (flow), serta analisis kepadatan dan pori dari campuran padat yang terbentuk (Kurniawan, 2014).

Aspal dengan penetrasi rendah dipakai untuk daerah yang memiliki cuaca panasatau volume lalu lintas tinggi, sedangkan aspal dengan penetrasi tinggi dipakai untuk daerah dingin atau volume lalu lintas rendah (Departemen Permukiman, 2013). Di Indonesia umumnya digunakan aspal penetrasi 60/70 dan 80/100.

Laston itu sendiri memiliki beberapa lapisan, yaitu lapis aus (wearing course), lapis perat (binder course) dan lapis fondasi (base course). Kerusakan jalan biasanya terjadi pada lapisan aus aspal beton, karena lapis aus itu sendiri merupakan lapisan yang paling atas dan langsung terkena gesekan akibat bebanroda.

Laston adalah suatu lapisan permukaan yang terdiri dari campuran laston keras dan agregat yang bergradasi menerus, dicampur, dihamparkan dan dipadatkan dalam kondisi panas atau suhu tertentu. Laston bersifat kedap air, mempunyai nilai struktural, awet tipe kerusakan yang

biasanya terjadi adalah retak dan terlepasnya butiran (Rahman, Djuniati, & Wibisono, 2017). Laston yang direncanakan Indonesia setara dengan spesifikasi Laston Bina Marga (Spesifikasi Bina Marga 13 / PT/B/1983) dan digunakanuntuk jalan-jalan dengan lalu lintas berat, tanjakan, pertemuan jalan serta daerah- daerah lainnya di mana permukaan menanggung beban roda yang berat. Lapis aspal beton diperuntukan untuk kelas lalu lintas berat dapat ditinjau dari ketentuan parameter Marshall menurut Pelaksanaan Lapis Aspal Beton Untuk Jalan Raya (SNI 03-1737-1989) dan penetrasi aspal yang dipakai. Aspal dengan penetrasi rendahdipakai untuk daerah yang memiliki cuaca panas atau volume lalu lintas tinggi, sedangkan aspal dengan penetrasi tinggi dipakai untuk daerah dingin atau volumelalu lintas rendah.

Filler adalah suatu mineral agregat dari fraksi halus yang merupakan bahan non-plastis dan non-organik. Pada campuran laston, filler berfungsi sebagai bahan pengisi rongga dalam campuran, sehingga meningkatkan kepadatan dan ketahanan campuran serta meningkatkan stabilitas campuran (Lucia, 2016).

Pada prakteknya fungsi dari filler adalah untuk meningkatkan viskositas dari aspal dan mengurangi kepekaan terhadap temperatur. Menurut (Yuniarto & Sentosa, 2006) meningkatkan komposisi *filler* dalam campuran dapat meningkatkan stabilitas campuran tetapi menurunkan kadar air sekaligus rongga udara dalam campuran. Komposisi filler dalam campuran tetap dibatasi, karena terlalu tinggi kadar filler dalam campuran akan mengakibatkan campuran menjadi getas (brittle) dan akan retak (crack) ketika menerima beban lalu lintas. Sehingga terlalu rendah kadar filler akan mengakibatkan campuran akan terlalu lunak pada saat cuaca panas.

Peran *filler* terhadap kinerja mekanik dalam campuran aspal beton dengan menggabungkan granit, kapur, dan kaolin sebagai bahan pengisi untuk tiga lapisan permukaan, dengan mengevaluasiparameter

menggunakan Marshall kadar optimum menunjukkan bahwa penggunaan bahan pengisi/filler dalam campuran aspalbeton memengaruhi kinerja campuran dalam tiga cara: (1) filler memengaruhi jumlah kadar aspal, (2) filler memengaruhi kemampuan kerja selama pencampuran dan pemadatan, dan (3) sifat yang dihasilkan dari aspal-filler mastic (kuning-muda) berkontribusi terhadap kinerja campuran itu. Hasil penelitian menunjukkan bahwa sifat-sifat filler menentukan interaksi dengan aspal dan berkontribusi terhadap kinerja campuran aspal (Zulkati, Diew, & Delai, 2012).

Alternatif campuran-beraspal (Laston) yang dapat diterapkan, sehingga mampu mengatasi dan mengurangi kerusakankerusakan akibat melemahnya daya ikat aspal terhadap butiran agregat dan filler, baik karena suhu, cuaca, mutu aspal danagregat, maupun metode pelaksanaan di lapangan. Salah satu cara untuk mengatasi hal tersebut adalah dengan mengganti bahan dasar filler alternatif yang memiliki fungsi sama dengan kualitas yang lebih baik. Penggunaan fly ash (abu terbang) sebagai *filler* (Ichwanto, 2011) dari penelitiannya menyebutkan bahwa dengan bertambahnya kadar fly ash maka nilai stabiltas dan nilai Marshall Quotient campuran aspal akan semakin tinggi dengan penggunaan kapur dan gabungan keduanya. Penggunaan filler semen dan abu batu dengan mengkaji sifat Marshall dalam campuran AC-WC dengan kadar aspal rencana yang digunakan baik pada campuran dengan filler semen portland maupun abu batu adalah 5,5% terhadap total campuran, menunjukan bahwa semen menghasilkan nilai stabilitas dan durabilitaslebih baik dari pada abu batu (Putrowijoyo, 2006).

Alternatif penggunaan *filler* untuk campuran aspal seperti debu batu kapur, debu *dolomite*, semen *portland*, bubuk terbang, debu tanur tinggi pembuat semen atau bahan mineral tidak plastis lainnya. Sedangkan banyak jenis *filler* seperti debu batu kapur merupakan pilihan utama untuk *filler* namun sulit didapatkan dan dapat

menggangu kesehatan pernapasan sedangkan semen *portland* mudah diperoleh dan mempunyai grading butiran yang bagus namun demikian harganya sangat mahal. Karena itu untuk mengatasi masalah ini perlu dicari alternatif pengganti, salah satu alternatif yang mungkin adalah limbah kulit kerang hijau yang berbentuk abu. Limbah kulit kerang hijau ini diperoleh dari budi daya kerang hijau di Cilincing.

Kerang hijau (Perna Viridis) merupakan jenis kerang yang populer di Indonesia. Kelimpahan kerang hijau di Indonesia menurut Direktorat Jenderal Perikanan Tangkap Indonesia, yaitu 3.353ton. Kerang hijau memiliki beberapa kegunaan, salah satunya adalah diolah sebagai makanan, sehingga cangkang kerang hjau yang merupakan bahan sisa produksi makanan dapat menimbulkan limbah yang cukup banyak. Limbah cangkang kerang hijau hanya dimanfaatkan untuk menimbun areal di sekitar pabrik (*landfill*), penjernih air, bahan obat-obatan, dan kerajinan tangan (Agustina, Purwanti, & Bapisa, 2019).

Kerang hijau cukup populer dimasyarakat sebagai bahan makanan dan telah dibudidayakan sebagai usahapenduduk daerah pesisir laut. cara membudidayakannya pun cukup mudah, tidak memerlukan modal besar dan dapat dipanen setelah berusia 6-7 bulan. Hasil panen pertahun pun cukup menjanjikan bisa mencapai 200-300 ton kerang utuh atau sekitar 60-100 ton daging kerang. Masyarakat pesisir biasanya membentuk kelompok usaha untuk membudidayakannya menjualnya ke pasar-pasar tradisional.

Selama ini masyarakat hanya mengambil daging kerang hijau sebagai lauk dan membuang kulitnya begitu saja, padahal sampah kulit kerang memiliki banyak sekali manfaat. Cangkang/kulit kerang hijau bisa dimanfaatkan sebagai bahan obat-obatan, penjernih air, dan kerajinan tangan. Manfaat lainnya adalah jika kulit kerang hijau ini diolah dengan cara yang benar maka bisa digunakan sebagai alternatif bahan bangunan.

Pemanfaatan limbah serbuk kerang yang pernah dilakukan dapat dimanfaatkan sebagai pengganti sebagian fraksi agregrat halus pada campuran aspal dengan kadar sebesar 5-20% dari berat agregat halus dalam campuran. Penggunaan cangkang laut ini dimaksudkan untuk kerang memperoleh suatu campuran yang memiliki nilai kestabilan dan kekuatan yang baik, sehingga bahan tersebut dapat dijadikan bahan pengganti alternatif agregat halus. Hasil analisis pengujian Marshall (Advanty, Bahri, & Razali, 2015) diketahui bahwa pergantian fraksi agregat halus dengan cangkang kerang memberikan karakteristik kekuatan Marshall masih berada di atas disyaratkan oleh British ambang vang Standard 594 (1985). Nilai terbesar 2,055.14 kg pada kadar cangkang 5% dan nilai terkecil 1,095.29 kg pada kadar cangkang 10%. Nilai density tertinggi2,49 kg/cc pada kadar 10% dan terendah2,13 kg/cc pada kadar 15%. Nilai density masih di atas ambang batas 2 gr/cc seperti yang disyaratkan AASHTO. Durabilitascampuran menggunakan cangkang kerang sebagai pengganti sebagian agregat halus sampai dengan 20% memberikan nilai 76,79%, masih di atas batas minimum disyaratkan (>75%).

Hasil analisis saringan abu kulit kerang hijau yang dilakukan di balai irigasi mencapai 96,7% yang lolos saringanno.200. Dapat dilihat bahwa abu kulitkerang hijau dapat memenuhi standar nasional untuk filler campuran aspal beton. Dari perhitungan mencari persentase kadar unsur kimia dari penelitian di lab fire engineering kulit kerang hijau memiliki 97,90 % CaO, 1% SiO₂ dan NaO₂. Dapat dilihat kandungan kalsium oksida cukup tinggi dalam kulit kerang hijau. Kalsium oksida merupakan yang dapat meningkatkan proses pengerasan dan menyerap karbon dioksida dalam udara. Kalsium oksida merupakan bahan utama pada debu batu kapur dan debu kapurpadam dan semen yang merupakan beberapa bahan yang bisa dijadikan filler, sehingga dengan terdapatnya

kandungan kalsium oksida dalam kulit kerang hijau menjadikan material ini dapat digunakan sebagai bahan pengganti *filler* dalam campuran aspal beton.

Terdapat penelitian terdahulu tentang penggunaan limbah bubuk cangkang kerang darah yang telah dilakukan oleh (Shafari, 2015) yang berjudul kajian parameter marshall dengan bubuk cangkang kerang darah sebagai pengganti sebagian filler dalam campuran lapis aspal beton wearing course menggunakan *filler* dengan persentase 5%, 7,5%, dan 10%. Hasil nilai optimum pada persentase 7,5% namun menurun pada persentase 10% penggunaan bubuk cangkang kerang darah. Dalam penelitian ini akan menggunakan persentase 6,5%, 7,5%, dan asumsi apakah reaksi 8,5% dengan penggunaan serbuk kulit kerang hijau sama dengan penggunaan bubuk cangkang kerang darah pada campuran lapis aspal beton.

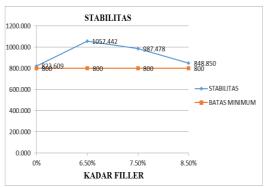
Penelitian ini bertujuan untuk mengetahui apakah penggunaan serbuk cangkang kerang hijau sebagai bahan pengisi alternatif pada campuran Laston dapat memenuhi parameter Marshall atautidak.

Berangkat dari latar belakang di atas, peneliti tertarik untuk melakukan penelitian parameter *Marshall* dengan menggunakan limbah serbuk kerang hijau sebagai *filler* campuran lapis aspal beton.

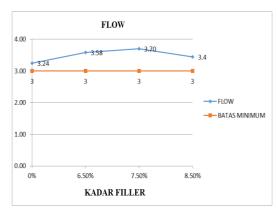
METODE

Jenis penelitian ini termasuk penelitian eksperimen yang kemudian ditunjang dengan berbagai literatur yang erat hubungannya dengan pokok masalah. Penelitian ini bertujuan untuk mengetahui apakah penggunaan serbuk cangkang kerang hijau sebagai bahan pengisi alternatif pada campuran Laston dapat memenuhi parameter *Marshall* atau tidak.

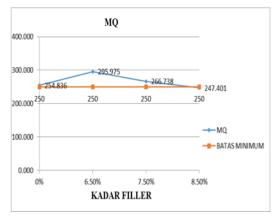
Penelitian menggunakan benda uji yang menggunakan limbah kulit kerang hijau yang dalam bentuk serbuk sebagai pengganti sebagian semen *portland* yang limbah kulit kerangnya diambil dari cilincing.

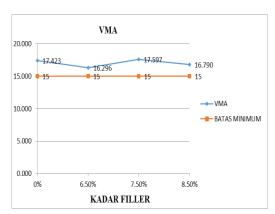

Ada 20 sampel yang akan di uji dalam penelitian ini seperti pada Tabel 1., yang merupakan keseluruhan populasi yang akan di uji parameter *marshall* nyasesuai dengan Prosedur pengujian *Marshall* mengikuti SNI 06-2489-1991 tentang Metode Pengujian Campuran Beraspal Panas dengan Alat *Marshall*.

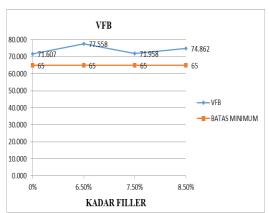
Tabel 1. Uji Marshall

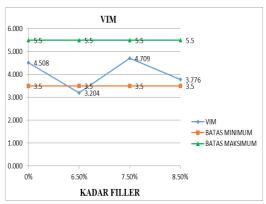

Variasi filler	Diameter	Tinggi	Jumlah benda uji yang menggunakan bahan pengisi (filler) dengan serbuk kulit kerang hijau
6,5%		(d	5
7,5%	101,6	76,2	5
8,5%	mm	mm	5
0%	(4 in)	(3 in)	5
(konvensional)			(konvensional)
Jumlah		(C = 1/2	20

Teknik analisis data yang digunakan dalam penelitian ini adalah analisis data inferensial. Analisis inferensial digunakan adalah Uji Whitney yang didasarkan atas prosedur pengumpulan data dalam penelitian ini. Adapun perhitungan dalam penelitian ini, seluruh proses analisis data dilakukan secara komputerisasi dengan menggunakan software IBM SPSS Data Statistics 21 for Windows.


Pengujian *Marshall* dilakukan untuk mencari parameter *Marshall* pada kondisi standar lalu lintas berat, yaitu 2 x 75 tumbukan. Disiapkan masing-masing 6 benda uji untuk tiap-tiap kadar aspal, yaitu 4%, 5%, 6%, 7%, dan 8%. Parameter *Marshall* tersebut adalah nilai stabilitas, kelelehan (flow), *Marshall* quotient (MQ), Void in Mineral Aggregates (VMA), Void Filled with Bitumen (VFB), dan Void In the Mix (VIM) sebagai berikut:


Gambar 1. Grafik Stabilitas Pada Berbagai Kadar Aspal


Gambar 2. Grafik *Flow* Pada Berbagai Kadar Aspal


Gambar 3. Grafik *Marshall Quetiont* PadaBerbagai Kadar Aspal

Gambar 4. Grafik VMA Pada Berbagai Kadar Aspal

Gambar 5. Grafik VFB Pada Berbagai Kadar Aspal

Gambar 6. Grafik VIM Pada Berbagai Kadar Aspal

HASIL DAN PEMBAHASAN

Dalam Tabel 2. dapat dilihat bahwa kadar *filler* optimum yang menggunakan *filler* serbuk kulit kerang hijau terdapat pada kadar 7,5% dikarenakan nilai stabilitas, kelelehan, MQ, VMA, VFB dan

VIM nya memenuhi semua persyaratanparameter *Marshall*.

Tabel 2. Data Hasil Pengujian *Marshall*

No	Karakteristik	Persyaratan	Persentase Interval Kadar Aspal			
110	Raiaktelistik	1 Cisyaratan	0%	6,5%	7,5%	8,5%
1	Stabilitas	Min 800	823,609	1057,44	987,478	848,850
2	Kelelehan	Min 3	3,24	3,58	3,70	3,40
3	MQ	Min 250	254,836	259,975	266,738	247,401
4	VMA	Min 15	17,423	16,296	17,597	16,790
5	VFB	Min 65	71,607	77,558	71,958	74,862
6	VIM	Min 3,5 &	4,508	3,204	4,709	3,776
		Max 5,5				

Berdasarkan hasil uji Parameter *Marshall* nilai kadar *filler* optimum pada persentase 7,5% dan persentase 0% (konvensional) sebagai kontrol terhadap semua interval kadar *filler*, sehingga tidak ada perbedaan yang signifikan penggunaan serbuk kulit kerang hijau dan semen sebagai *filler*.

Setelah data diolah dengan software, didapatkan hasil uji Mann-Whitney seperti di bawah ini :

Tabel 3. Uji Mann-Whitney

	NILAI_PARAMETER_MARSHALL 15,000				
Mann-Whitney U					
Wilcoxon W	36,000				
Z	-,480				
Asymp. Sig. (2-tailed)	,631				
Exact Sig. [2*(1-tailed Sig.)]	,699°				
a. Grouping Variable: KADA	R_ASPAL				

Dari hasil uji Mann-Whitney di atas, nilai signifikansi yang didapat adalah 0,631 yang artinya > 0,05. Maka dari itu, hasil uji tidak signifikan secara statistik. Dengan demikian, Ho diterima yang menyatakan tidak ada perbedaan antara hasil pengujian terhadap benda uji aspal dengan *filler* limbah serbuk kerang hijau

dengan hasil pengujian terhadap benda uji aspal dengan *filler* semen (aspal konvensional).

SIMPULAN

Penelitian yang dilakukan untuk konstruksi lapisan jalan raya, yaitu jenis lapis aspal beton dengan menggunakan serbuk kulit kerang hijau sebagai pengganti sebagian bahan pengisi (filler) yang dikaji terhadap parameter Marshall dengan kesimpulan sebagai berikut:

- Pemanfaatan limbah serbuk kulit kerang hijau sebagai filler ini diharapkan memenuhi persyaratan parameter Marshall yang sesuai dan menghasilkan perpaduan yang baik antara agregat kasar, agreget halus, aspal, dan filler. Material yang terdapat pada limbah serbuk kulit kerang hijau memiliki kandungan kalsium oksida cukup tinggi, yaitu sehingga 97,90%, dengan terdapatnya kandungan kalsium oksida dalam kulit kerang hijau material ini menjadikan dapat digunakan sebagai bahan pengganti filler dalam campuran aspal beton.
- 2. Nilai persentase serbuk kulit kerang hiiau optimum terdapat pada persentase 7,5% dikarenakan semua persyaratan memenuhi parameter Marshall, nilai stabilitas 987,478 dengan nilai minimum 800, nilai kelelehan 3.70 dengan minimum 3, nilai MQ 266,738 dengan nilai minimum 250, nilai VMA 17,597 dengan nilai minimum 15, nilai VFB 71,958 dengan nilai minimum 65, dan nilai VIM 4,709 dengan nilai minimum 3,5 dan maximum 5,5.
- 3. Hubungan antara variasi persentase serbuk kulit kerang hijau dengan parameter *Marshall*, yaitu Stabilitas, flow, VMA, dan VIM membentuk kecenderungan positif dengan seiring kenaikan persentase dari 0% sampai 7,5% namun menurun pada

- persentase 8,5% serbuk kulit kerang. Semakin besar proporsi serbuk kulit kerang hijau akan menurunkan nilai parameter *marshall*.
- 4. Nilai stabilitas, kelelehan (flow), VFB. dan **VMA** memenuhi persyaratan parameter *Marshall* untuk lalu lintas berat. Hanya nilai VIM persentase 6,5% dan nilai Marshall Quetient pada persentase 8.5% serbuk kulit kerang tidak persyaratan memenuhi parameter marshall Laston AC-WC.
- Berdasarkan hasil uji Mann-Whitney ternyata dari hipotesis yang diajukan nilai signifikansi yang didapat adalah 0.631 yang artinya > 0.05. Dengan demikian, Но diterima menyatakan tidak ada perbedaan antara hasil pengujian aspal beton yang menggunakan limbah serbuk kulit kerang hijau sebagai bahan pengisi sebagian filler dengan hasil pengujian aspal beton konvensional yang menggunakan semen sebagai bahanpengisi terhadap nilai parameter marshall.

DAFTAR PUSTAKA

- Advanty, E., Bahri, S., & Razali, R. (2015).

 Pengaruh Penggantian Sebagian

 Filler Semen dengan Kombinasi
 40% Serbuk Batu Bata dan 60%

 Abu Cangkang Lokan pada
 Campuran Asphalt Concrete

 Binder Course (AC-BC).
- Agustina, S. S., Purwanti, N. N., & Bapisa, L. (2019). Pelatihan Pengelolaan Usaha Kerajinan Limbah Cangkang Kerang. *Jurnal PengabdianMasyarakat*, 2(2).
- Ichwanto, M. A. (2011). Penggunaan Bahan Pengisi (filler) Fly Ash terhadap Parameter Marshall pada Lapis Aspal Beton (Laston).

Kurniawan, F. H. (2014). Pengaruh

- Tumpahan Bahan Bakar Minyak dan Oli terhadap Kinerja Campuran Lataston-WC dengan Menggunakan Metode *Marshall. Jurnal Teknik Sipil dan Lingkungan*, 2(3), 553-559.
- Lucia, L. (2016). Penggunaan Mikro Asbuton Sebagai Bahan Pengisi (Filler) terhadap Durabilitas Campuran Hot Rolled Asphalt (HRA). Jurnal Sipil Statik, 4(6).
- Putra, H. A., Dewi, A., & Pataras, M. (2015). Kinerja Campuran Aspal Lataston HRS *Base* Dengan Variasi Bahan *Filler* dengan Menggunakan Metode *Marshall*.
- Putrowijoyo, R. (2006).Kajian Laboratorium Sifat Marshall dan Durabilitas Asphalt Concrete-Wearing Course (AC-WC) dengan Membandingkan Penggunaan antara Semen Portland dan Abu Batu sebagai Filler. Semarang: Program Magister Teknik Sipil, Program Pascasarjana, Universitas Diponegoro.
- Rahman, A., Djuniati, S., & Wibisono, G. (2017). Pengaruh Pasir Pulau Bungin Kabupaten Kuantan Singingi pada Campuran Laston Lapis Fondasi/Asphalt Concrete Base (AC-Base). Jom FTEKNIK, 4(2).
- Yuniarto, E., & Sentosa, L. (2006). Durabilitas Laston dengan *Filler* Abu Gambut. *Jurnal Ilmiah Semesta Teknika*, 9(2), 114-123.
- Zulkati, A., Diew, W. Y., & Delai, D. S. (2012). Effects of Fillers on Properties of Asphalt-Concrete Mixture. Journal of Transportation Engineering, 138(7).