p-ISSN: 2339-0654

e-ISSN: 2476-9398

OPTIMALISASI PENAMBAHAN SERAT IJUK TERHADAP SIFAT MEKANIK PAPAN SEMEN-GIPSUM

Alimin Mahyudin, Meri Darmawi.

Jurusan Fisika FMIPA Universitas Andalas Kampus Unand, Limau Manis, Padang, 25163 amahyudin@yahoo.com

Abstrak

Penelitian ini bertujuan untuk mengetahui pengaruh penambahan serat ijuk terhadap sifat fisis dan mekanik papan komposit dengan penambahan serat ijuk yang optimum. Penambahan serat ijuk yang digunakan untuk masing-masing sampel dengan perbandingan matriks semen dengan gipsum yaitu 0%, 2%, 4%, 6% dan 8%. Penelitian dilakukan dengan menggunakan jenis komposit laminat yaitu komposit yang terdiri dari dua lapis atau lebih yang digabungkan menjadi satu dengan setiap lapisnya memiliki karakteristik sifat tersendiri. Dari pengujian sifat mekanik untuk kuat tekan dan kuat lentur komposisi optimum penambahan serat ijuk sebanyak 4% yang nilainya masing-masing 123,87 kg/cm² dan 40,83 kg/cm². Dari keseluruhan pengujian persentase penambahan ijuk terbaik terdapat pada komposisi serat ijuk 4%.

Kata Kunci: Papan semen-gipsum, serat ijuk, komposit laminat

OPTIMUM OF PALM FIBERS ADDITION ON MECHANICAL PROPERTIES FOR CEMENT-GYPSUM BOARD

Abstract

The purpose of this research is to know the influence addition palm fibers on the physical and mechanical properties of composite board. The addition of palm fiber used for each sample by comparison with gypsum and cement matrix is 0%, 2%, 4%, 6% and 8%. The research conducted by using a type of composite laminate is a composite of two layers or more are combined into one with each of layers has its own characteristic properties, manufacturing this board used three of layers, where cement with palm fibers contain at face-back layers and gypsum with palm fibers contain at core layers. The mechanical properties of the specimens as follows the maximum value of compressive strength and flexural strength on addition palm fibers 4% which is value 123,87 kg/cm² and 40,83 kg/cm². Generally, for all research, best value for addition palm fibers on 4%.

Keywords: cement-gypsum board, palm fibers, a composite laminate

p-ISSN: 2339-0654 e-ISSN: 2476-9398

1. Pendahuluan

Perkembangan komposit tidak hanya komposit sintetis saja tetapi juga mengarah ke komposit natural dikarenakan keistimewaan sifatnya yang dapat didaur ulang (renewable) terbarukan, sehingga mengurangi konsumsi petrokimia maupun gangguan lingkungan hidup. Komposit dengan serat memiliki keunggulan alam lain dibandingkan dengan komposit sintetis. Komposit natural lebih ramah lingkungan karena mampu terdegradasi secara alami dan serat alam pun harga lebih murah dibandingkan serat sintetis. Selain itu serat sintetis juga menghasilkan gas CO dan debu yang berbahaya bagi kesehatan jika didaur ulang, sehingga perlu adanya bahan alternatif pengganti serat sintetis tersebut.

Salah satu ienis produk penggabungan material kayu dengan bahanbahan lain biasanya dikenal dengan sebutan produk komposit adalah papan mineral. Hal ini disebabkan papan mineral selain tidak membutuhkan persyaratan bahan baku yang rumit juga memiliki karakteristik yang unggul seperti tahan terhadap serangan organisme perusak, cuaca dan kelembaban, serta relatif tahan terhadap api. Dalam bentuk panel, produk komposit ini digunakan untuk aplikasi struktural dan non struktural untuk kondisi interior maupun eksterior (Moslemi, 1989).

Konsep dasar penggabungan serat atau partikel dari tumbuhan, seperti partikel kayu atau limbah pertanian dan perkebunan, dengan matriks anorganik telah lama diterapkan. Selama beberapa waktu ini, konsep dasar tersebut telah diaplikasikan untuk penggunaan serat dan partikel kayu atau bahan berlignoselulosa lainnya dalam bentuk papan semen partikel dengan semen portland sebagai perekatnya, ataupun dengan material anorganik lainnya seperti gipsum dan magnesit (Moslemi, 1989).

Papan semen partikel merupakan salah satu produk panel kayu yang berpotensi

untuk dikembangkan. Papan semen partikel merupakan papan tiruan yang terbuat dari kayu atau campuran partikel bahan berlignoselulosa lainnya, semen dan bahan tambahan. Papan semen partikel memiliki kelebihan jika dibandingkan dengan produk biokomposit lainnya, antara lain tahan terhadap jamur, serangga dan api, tahan terhadap kelembaban serta memiliki stabilitas dimensi yang tinggi. Suatu sifat penting lainnya yaitu panel ini tidak menghasilkan bahan-bahan kimia berbahaya seperti yang terjadi dalam pembuatan papan partikel yang direkat dengan perekat anorganik atau sintetis, dan tidak mempengaruhi kualitas udara dalam ruangan selama penggunaan (Pease, 1994).

Melihat perkembangannya sampai saat ini, papan semen sendiri selain memiliki kelebihan stabilitas dimensi yang tinggi, namun juga memiliki masalah dimana waktu pengerasan semen (curing) yang relatif lama yakni minimal 28 hari (± 1 bulan) dan merupakan jenis panel yang cukup berat. Dibandingkan dengan papan semen, papan gipsum memiliki kelebihan dimana merupakan panel yang ringan dan mudah dalam pengerjaannya, namun kelemahan utama dari papan gipsum adalah mudah menyerap air dan mempunyai kekuatan yang rendah dari papan semen. Oleh karena itu, salah satu cara untuk mengatasi permasalahan dari papan semen dan papan gipsum tersebut adalah dengan membuat papan semen-gipsum dengan variasi penambahan serat ijuk yang menjadi perhatian dalam penelitian ini.

2. Metode

a. Persiapan Bahan

Penelitian ini dilakukan di Balai Riset dan Standarisasi Industri (baristand industry) Ulu Gadut Padang. Pada setiap cetakan sampel digunakan panjang serat ijuk dengan panjang serat 3 cm dan penambahan persentasi serat 0%, 2%, 4%, 6% dan 8% dari

p-ISSN: 2339-0654 e-ISSN: 2476-9398

volume cetakan uji , uji kuat tekan dan uji kuat lentur. Papan semen-gipsum yang dibuat berukuran 5 cm x 5 cm x 5 cm untuk pengujian kuat tekan. Sedangkan untuk pengujian kuat lentur dibuat papan berukuran 20 cm x 5 cm x 5 cm. Papan semen-gipsum yang dibentuk dari semen, serat ijuk dan gipsum ini dibuat formulasi untuk lapisan face dan back seperti yang terlihat pada Gambar 1.

Gambar 1. Susunan lapisan bahan komposit

Persentase gipsum dan semen yang digunakan untuk masing-masing yaitu dengan perbandingan gipsum dan semen yang tetap vaitu 40 : 60, sedangkan penambahan serat ijuk dimulai dari 0%, 2%, 4%, 6% dan 8%. Adonan diaduk secara merata dengan tangan, setelah merata dicetak menjadi lembaran dalam cetakan yang terbuat dari kayu berukuran 5cm x 5cm x 5cm dan 20cm x 5cm Papan semen-gipsum yang telah terbentuk dikondisikan pada suhu ruangan selama 10 hari sebelum digunakan untuk pengujian sesuai standar. Penelitian dilakukan dengan menggunakan tiga kali pengulangan untuk setiap jenis papan dengan kombinasi perlakuannya, yaitu dengan lima variasi penambahan serat ijuk mulai dari 0%, 2%, 4%, 6% dan 8%. Sehingga jumlah keseluruhan papan yang dibuat sebanyak 60 buah.

b. Pengujian Sifat Mekanik Papan Semen-Gipsum

1. Uji Kuat Tekan

Dalam pengujian kuat tekan rumus yang digunakan sesuai dengan persamaan (1):

Tegangan tekan (fc) =
$$\frac{P}{A}$$
 (1)

Keterangan:

fc = tegangan tekan (kg/cm²) p = beban maksimum material (kg)

A = luas permukaan yang mendapat gaya (cm²)

2. Uji Kuat Lentur

Kekuatan lentur adalah kemampuan material untuk menahan gaya lentur yang diberikan dengan arah tegak lurus terhadap penampang sampel. Untuk menentukan nilai dari kuat lenturnya digunakan persamaan (2):

$$fr = \frac{3 \text{ B.S}}{2 \text{ L.T}^2}$$

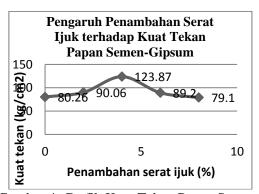
(2)

Keterangan:

B = beban patah maksimum (kg)

S = jarak tumpuan (cm)

L = lebar rata-rata benda uji (cm)

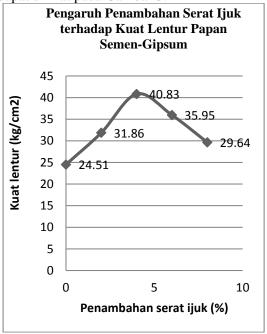

T = tebal rata-rata benda uji (cm)

 $fr = kuat lentur (kg/cm^2)$

3. Hasil dan Diskusi

1. Kuat Tekan

Nilai kuat tekan papan semen-gipsum berkisar antara 79,10 kg/cm² – 123,87 kg/cm². Nilai kuat tekan tertinggi diperoleh dengan penambahan serat ijuk 4 %. Penambahan serat ijuk mempengaruhi kuat tekan papan semen-gipsum, penambahan serat ijuk menyebabkan kuat tekan meningkat, namun peningkatan nilai tersebut hanya terjadi pada satu variasi penambahan serat ijuk. Untuk lebih jelasnya dapat dilihat pada Gambar 4.

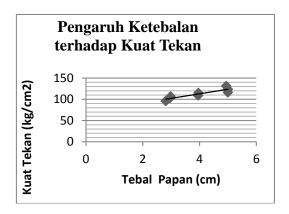

Gambar 4. Grafik Kuat Tekan Papan Semen-Gipsum

Perbedaan hasil kuat tekan pada tiaptiap papan semen-gipsum, membuktikan bahwa penambahan bahan penguat papan semen-gipsum mempunyai karakteristik yang berbeda dan akan berpengaruh terhadap kekuatannya. Ijuk bersifat memberikan kekuatan, semakin banyak ijuk semakin kuat, kekuatan tersebut dipengaruhi penambahan persentase serat tertentu. Hasil analisis menunjukkan bahwa penambahan serat ijuk 4 % merupakan hasil kuat tekan yang maksimal yaitu 123,87 kg/cm². Pada penambahan serat ijuk yang lebih banyak menyebabkan kuat tekan papan semengipsum menurun, hal ini disebabkan komposisi serat ijuk yang lebih banyak mempengaruhi lekatan antara semen dengan ijuk maupun ijuk dengan gipsum sehingga mengurangi kekuatan papan.

Menurut standar *bison gypsum fibre board* memiliki standar kuat tekan yaitu 53,9 kg/cm², kemudian standar ISO 8335 (1987) (*Cement bonded particleboards*) yaitu 88,235 kg/cm². Dari standar tersebut nilai kuat tekan papan semen-gipsum berserat ijuk pada semua komposisi memenuhi standar, kecuali pada komposisi penambahan ijuk 0% dan 8%.

2. Kuat Lentur

Semakin banyak ijuk kuat lentur semakin besar, hal ini sesuai dengan sifat ijuk sebagai bahan penguat. Namun terlalu banyak ijuk akan menyebabkan nilai kuat lentur semakin kecil, hal ini disebabkan oleh bahan pengisi yaitu ijuk yang menghalangi rekatan antara semen dengan maupun ijuk dengan gipsum. Jika sifat masing-masing bahan tidak saling mempengaruhi maka sifat hasil campuran adalah rata-rata sifat masing-masing dengan memperhatikan jumlah masing-masing (Antono, 1972). Untuk lebih jelasnya hubungan penambahan serat ijuk terhadap kuat lentur papan semen-gipsum dapat dilihat pada Gambar 5.

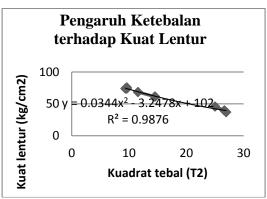

Gambar 5. Grafik Kuat Lentur Papan Semen-Gipsum

Hasil analisis terlihat jika papan semen-gipsum mengandung komposisi serat lebih banyak maka kuat lentur akan berkurang dan papan semen-gipsum cepat patah. Ini karena proses pengikatan antara semen, gipsum, serat ijuk dan air tidak sempurna, sehingga pengikatan yang terjadi di dalam material tidak sempurna.

3. Pengaruh Ketebalan Papan Semen-Gipsum terhadap Kuat Tekan

Pada aplikasi papan partisi dan plafon, sesuai dengan prosedur yang dikeluarkan ASTM C 473 standar papan partikel memiliki ketebalan 0,95 cm – 2 cm. Secara rumusan matematis, nilai kuat tekan tidak dipengaruhi oleh ketebalan papan, tetapi dipengaruhi oleh luas bidang yang ditekan

oleh beban. Namun, aplikasi di lapangan, ketebalan papan berpengaruh terhadap nilai kuat tekan. Semakn tebal ukuran sebuah papan, kuat tekan yang dihasilkan semakin besar.



Gambar 6. Grafik Hubungan Ketebalan terhadap kuat tekan

Hasil analisis grafik menunjukkan bahwa semakin tebal ukuran papan, nilai kuat tekan akan semakin besar, karena papan yang tebal mampu menahan beban yang lebih besar. Untuk aplikasi ukuran tebal papan yang sebenarnya, maka dibuat persamaan untuk mengetahui nilai kuat tekan dengan ukuran ketebalan yang diinginkan yaitu ketebalan 1,5 cm, maka diperoleh nilai kuat tekan sebesar 83,33 kg/cm² yang masih memenuhi standar papan partikel.

4. Pengaruh Ketebalan Papan Semen-Gipsum terhadap Kuat Lentur

Semakin tebal sebuah papan semengipsum maka beban yang mampu ditahan papan tersebut akan semakin besar, namun nilai kuat lentur akan berbanding terbalik dengan kuadrat ketebalannya. Untuk lebih jelasnya hubungan ketebalan terhadap kuat lentur dapat dilihat pada Gambar 7.

Gambar 7. Grafik Hubungan Ketebalan terhadap Kuat Lentur

Semakin berkurang ketebalan papan, nilai kuat lentur akan semakin tinggi, karena papan akan cenderung lebih elastis dibandingkan dengan papan yang lebih tebal meskipun hanya dapat menahan beban yang lebih kecil dibanding papan yang lebih tebal. Nilai kuat lentur ini juga didukung oleh tambahan bahan pengisi yaitu serat ijuk yang bersifat elastis.

4. Kesimpulan

- 1. Penambahan serat ijuk berpengaruh terhadap sifat mekanik papan semengipsum berserat ijuk. Penambahan serat ijuk sebanyak 4% menghasilkan kuat tekan dan kuat lentur maksimum.
- 2. Persentase ijuk terbaik untuk papan semen-gipsum berserat ijuk yang berkualitas dan memenuhi standar terdapat pada komposisi ijuk sebanyak 4%.
- Ketebalan mempengaruhi sifat mekanik papan semen-gipsum, semakin tebal ukuran papan, kuat tekan akan semakin besar namun kuat lentur akan semakin kecil seiring dengan tebalnya ukuran papan tersebut.

Saran

Dari penelitian yang telah dilakukan disarankan agar :

 Campuran tepung gipsum, semen, dan air dilakukan secara merata dengan memperhitungkan perbandingan antara matriks dan air serta teknik pemadatan

lebih banyak untuk menyempurnakan hasil-hasil penelitian.

p-ISSN: 2339-0654

e-ISSN: 2476-9398

pada pembuatan sampel perlu ditingkatkan yaitu menggunakan alat dengan tekanan spesifik untuk menghasilkan papan semen-gipsum berkualitas tinggi.

2. Perlu diadakan penelitian lebih lanjut tentang papan semen-gipsum berserat ijuk dengan komposisi dan variabel yang

American society for Testing and Material, Standard Test Methosd for Physiscal

Testing of Gypsum Panel Products, 2007, PA ASTM standard C 473 (97). Aulia, Muhamad Rrifki, 2006, Sifat Fisis Dan Mekanis Papan Gipsum Dari Kayu gmelia arborea

roxb Pada Berbagai Kadar Gipsum Dan Perlakuan Pendahuluan, Skripsi, Institut Pertanian Bogor.

Christiani, Evi, 2008. Karakterisai Ijuk Pada Papan Komposit Ijuk Serat Pendek Sebagai Perisai Radiasi

Neutron, Tesis, Universitas Sumatera Utara.

Gypsum Assosiaction, 1973, Application of Gypsum Wallboard on Ceillings Receive

Water-Based Spray Texture Finishis, GA-215-73, Chicago, IL: Gypsum Assosiaction. Moslemi AA. 1989. Correlation Between Wood Cement Compatibility and Wood

5. Daftar Pustaka

Extractives Forest Product Journal 39(6): 55-58.

Pease DA. 1994. Panels: Product, Applications and Production Trends. USA: Miller Freeman.

Sinaga, 1983. Pengaruh Kerapatan Papan Partikel terhadap Daya Serap Air Papan Partikel. Skripsi

Surdia, Tata, 1995. Pengaruh Arah Serat terhadap Jumlah Serat yang disikan kedalam Matriks.

Skripsi

Suriadi. 2011. Analisis Pengaruh Penambahan Serat Ijuk Aren Terhadap Sifat Mekanik Dan Sifat Fisis Gipsum Profil Dengan Perekat Lateks Akrilik, Tesis, Universitas Sumatera Utara.

Witney, M.O, and Washa, G>W, 1954, "Materials of Construction", IX-3IX-5, Jhon Wiley & Sons

, Inc, New York